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Summary

Regression modelling of trajectory measurement data was examined as a means for improving
the performance of aircraft trajectory tracking and prediction. Regression models were used for
adaptively removing measurement noise from trajectory observations and extrapolating trajectory
measurements. A comparative study was done between three models of aircraft dynamics used
in an extended Kalman filter: a strictly translational model, an attitude/translation model, and
an attitude/translation model that uses vehicle specific inertial characteristics. Adaptive
regression models were used for measurement accuracy enhancement. Comparisons were also
made between errors resulting from position and attitude predictions using Runge-Kutta
integration and extrapolated regression models.

A unique aspect of this study is the use of actual trajectory data. The study was conducted using
actual position and attitude trajectory data for F-14A aircraft acquired during training flights.
The data is supplied through the Navy's TACTS (Tactical Aircrew Training System) at Cherry
Point Marine Corps Air Station.

Overall, the use of attitude information has been confirmed as a means for improving tracking
and predictive performance. Regression modelling in both preconditioning measurement data
and extrapolating artificial measurements has been demonstrated to be a powerful tool for
improving the performance of advanced tracking and prediction techniques.
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Introduction

This report describes research in the use o. regression models of trajectory measurement data
for improving the performance of aircraft trajectory tracking and prediction algorithms.
Regression models were used to adaptively precondition or remove measurement noise from
trajectory observations. Regression models were also considered for extrapolating trajectory
measurements when a prediction of aircraft position is required. The regression modelling
approach was adopted as a means of better estimating the underlying dynamics of the aircraft
as observed through position and attitude measurements.

A comparative study was done between three models of aircraft dynamics used in an extended
Kalman filter: a strictly translational or center of gravity model, a model that incorporates both
aircraft attitude and translation, and an attitude/translation model that uses vehicle specific
inertial characteristics. Comparisons were made between the tracking and prediction errors for
the three models using measurement data directly and using data that was preconditioned by
adaptive regression models. Comparisons were also made between errors resulting from position
and attitude predictions using Runge-Kutta integration and regression models.

Numerous investigators have shown the importance of attitude data in the tracking and prediction
of aircraft trajectory [1,2,3,27,30,31]. This work builds upon the type of tracker proposed by
Andrisani [1,2,3]. This approach exploits the relationship between vehicle attitude and
acceleration. The previous work applies measurement data directly to the tracker and Runge-
Kutta integration to predict the future trajectory. The new approaci in this work considers
measurement data preconditioned by linear Kalman filters derived from power series regression
models that are constantly updated by new measurements. In addition, this approach uses a new
means of predicting future trajectories by using the most recent regression model for
extrapolating trajectory measurements. The extrapolated measurements are used to continue the
operation of the tracker during the prediction interval.

The study was conducted using actual position and attitude trajectory data for F-14A aircraft
acquired during training flights. The data is supplied through the Navy's TACTS (Tactical
Aircrew Training System) at Cherry Point Marine Corps Air Station. All positional data is
collected by ground-based radar and attitude data is collected using on-board gyroscopic
instruments. A unique aspect of this study is the use of actual trajectory data. Many prior
comparative studies of filter performance have been made using purely simulated data or attitude
data estimated from translational data.
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Preconditioning Measurement Data

The measurements used in the tracking filters consist of a vector of translational data in polar
coordinates and their corresponding derivatives. These are coupled with the aircraft body
attitude in terms of Euler angles. The translational information is derived from radar
observations. The attitude data is gyroscopically derived on board the aircraft and transmitted
to the ground station. In an actual tracking engagement, these angles are assumed to be
estimated by an electro-optical image sensing technique. The symbols used for all of the
measured parameters are given in Table 1. The important attitude and translational measurement
data are summarized in Table 2. All of the measurements are used in measurement equations
for the extended Kalman filter. Each measurement has an additive noise term to account for
measurement uncertainty. The measurement noise terms are assumed to be Gaussian, white, and
statistically independent from the other measurement noises, any process noise and the initial
state of the aircraft trajectory.

This study used a new technique for enhancing the effectiveness of tracking and prediction
filters. Independent linear Kalman filters for each measured parameter associated with the
trajectory were used to "precondition" the observations prior to use in the tracking and
prediction filter. Independent parameters such as range, azimuth and elevation as well as roll,
pitch and yaw are preconditioned in order to improve the resultant state estimates. The basic
concept involves the creation of a regression model (specifically, an nth order power series in
time) of the parameter signature over a brief interval. The resulting regression model is
differentiated n times. The resulting differential equation is converted into a stat, model and
used to implement a linear Kalman filter for that measurement [17,18,19,20,21]. A flowchart
illustrating the regression modelling process is shown in Figure 1. A derivation of the method
for converting a power series into a state model is provided in Appendix A.

The regression model is updated for each time step in the discrete measurement process.
Statistics for the process noise are extracted from the model derived at each time step.
Measurement noise statistics are found by conventional techniques. This approach makes the
usual assumptions regarding the statistics of the states and disturbances. It should be noted that
the "state" of the measurement that results from this modeling is not identical to the vector
consisting of the measurement and its relevant time derivatives. However, a linear
transformation can be performed to convert this state into the units of the measurement. This
transformation is also extracted from the regression model [17,18,19].

This method is intended to remove noise disturbances from a measurement that has significant
dynamics. It has been shown to be effective in improving the quality of measurement signatures
in a variety of manufacturing processes [20,21]. The method uses an assumption that a time-
varying measurement has dynamics that are describable and applicable to a linear Kalman filter.
These dynamics may not be understood from "first principles"; however, they may be described
in a terms of a regression model. The regression model derives useful information from the
measurement process and helps in estimating the actual measurement.
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This approach is not simply a low-pass filtering of the measurement. The regression model for
the measurement is selected based on the statistical significance of the terms in the power series.
If the measurement process has high-order dynamics, corresponding terms in the regression
model will be significant in describing the time signatures (as evaluated by standard t-tests and
F-tests). In practice, short intervals of aircraft trajectory measurements such as range can be
effectively models by a third-order power series. This is reasonable since the measurement is
likely to be describable in terms of velocity, acceleration and jerk.

Figures 2-10 show actual F-14A trajectory measurements over a nine second interval. The
actual measurements, noisy measurements and preconditioned estimates are shown. The noisy
and preconditioned measurements were both used in the extended Kalman filter estimator for
trajectory tracking. These figures illustrate the ability of linear Kalman filters, derived from
regression models of noisy data, to effectively estimate the underlying measurements of the
aircraft trajectory with significant disturbances.

The adaptively created regression models were also used in the trajectory prediction process.
Previous investigations used Runge-Kutta integration of the last tracked state in order to predict
future states through the time update cycle in the extended Kalman filter. The regression models
derived for preconditioning allow prediction to be performed in a novel way. The last estimated
regression model of the measurement is used to extrapolate the measurement throughout the
prediction interval. The extrapolated data in the prediction interval is shown at the end of each
trajectory measurement shown in Figures 2-10. In the process of testing the various tracking
techniques, extrapolations were made every second. The extrapolations shown are fr,,
illustrative purposes. These extrapolations or "artificial measurements" are used to continue the
operation of the extended Kalman filter during the prediction interval. The state and
measurement update cycles of the extended Kalman filter are executed in the identical fashion
as they were during the tracking interval.
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Models Used for Trajectory Tracking

Three different dynamic models of the aircraft trajectory were used in this investigation.
Comparisons were made between these models of aircraft dynamics used in an extended Kalman
filter: a strictly translational or center of gravity model, a model that incorporates both aircraft
attitude and translation, and an attitude/translation model that uses vehicle specific inertial
characteristics. The symbols used in the various trackers are defined in Table 1. The
measurement vector of all trackers is given in Table 2. It should be noted that the center of
gravity tracker does not use the attitude measurements (roll, pitch and yaw).

The center of gravity tracker used three independent estimators for tracking the translation of
the aircraft. These trackers are similar to the acceleration model in other center of gravity
methods [8,11,23,25,26,40]. A third order Gauss-Markov model is used to approximate the jerk
in each coordinate direction. The center of g avity model is given in Table 3. In the process
of implementing the filter it became obvious that the acceleration model was the key to
reasonable results. An experimentally selected value for the correlation time 'r provided robust
performance using virtually conditions and sets of input data.

The attitude translation tracker is taken from the work presented in [1,2,3,5]. Fifteen
differential equations are shown in Table 4. Six of these equations describe the rotation of the
aircraft, six describe the translation and three equations provide the model used for the
acceleration. These equations show the importance of vehicle attitude in modeling translation.
Orientation of the aircraft provide valuable insight into the direction and rate of the aircraft
velocity.

In order to attempt to recreate the work described in [1], no vehicle-specific inertial constants
were used in implementing the attitude/translation model. The mathematical model for the
angular acceleration of the aircraft was reduced to simply white noise. The only vehicle specific
data used in this case were the lift coefficient, span and mass.

The third model used in this study was the attitude/translation model including that vehicle
specific inertial characteristics. The inertial data was supplied by NAVAIR for the specific
vehicle under test. This substantially more complete model assumed access to the principal
moments of inertia for the aircraft. This is a reasonable scenario in cases, since many potential
encounters could take place with aircraft that are well understood in terms of the their mass
properties (in fact, some may have been built by US suppliers).
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Comparative Studies of Filter Performance

An example was used to perform a comparative study of the three tracking filters (center of
gravity (CG), attitude/translation (AT) and attitude/translation with vehicle specific inertia (AT-
VSI)). These trackers were tested using both noisy and preconditioned measurement data. The
standard deviation of the measurement noises are given in Table 5. Two different approaches
to predicting the trajectory of the aircraft were used: (1) Runge-Kutta integration of the state
equations and (2) continued operation of the extended Kalman filter using artificial measurements
extrapolated from regressiorn models of the various measurements.

All tests were conducted usiag actual aircraft data collected from the TACTs training system at
Cherry Point MCAS. Various training runs of F-14A aircraft were available for testing
purposes. The particular trajectory used for this work is illustrated in terms of aircraft position
and attitude in Figure 11. A vertical line is projected onto a flat earth (or plane tangent to the
earth at the radar station) approximately every second. The triangular symbol gives an
indication of aircraft attitude only and is not to scale. A plan view of the trajectory is given
Figure 12. It should be noted that some of the radar measurements were at ranges up to '-7
miles.

A portion of the trajectory shown in Figures 11 and 12 was selected to test the comparative
performance of the filters. A 4 g turn to the right while diving was the selected maneuver. The
turn had accelerations ranging from 0 to 4 g and velocities close to Mach 0.7. The maximum
bank angle was close to 90 degrees. The total duration of the selected trajectory was 9 seconds.
This position of the trajectory is illustrated in Figure 13. Each of the measurements of the
trajectory was corrupted with realistic Gaussian, white, statistically independent noise with
statistics given in Table 5.

The results of the tracking and prediction performance are summarized in Appendix B. Four
different intervals of tracking are shown in Tablet B1-B4. In each case, the tracking errors and
the prediction errors corresponding the tracking interval are summarized. There are separate
maximum error measurements shown for x, y and z directions. A maximum Euclidean distance
is also given. The arithmetic average and the root mean square (RMS) Euclidean errors for the
intervals are also given. It is recognized that other error metrics may be used. However, the
Euclidean norm was selected as a convenient way of showing comparative performance.

It should be noted that the error measurements are not necessarily a "ground truth" or absolute
indication of tracking or prediction accuracy. The measurements are made at a distance of
several miles. Furthermore, the measurements are made on a real aircraft with a radar cross
section that varies with attitude. Both of these factors limit the ultimate accuracy of the "actual"
measurements from the TACTs data. It is suspected that some typt- of smoothing is performed
on the data when it is recorded on the TACTs debriefing system. The contacts at Loral
Aerospace who provided the data did not know any details on the smoothing algorithms or where
not at liberty to discuss them.
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Appendix B shows a sequence of tables corresponding to tracking intervals of increasing duration
and one second prediction intervals. In each case, all filters where run on the same data for
comparison purposes.

The center of gravity tracker consistently showed the worst tracking performance in terms of
maximum Euclidean tracking error with noisy measurements. This result is consistent with the
results reported by a number of investigators [1,2,3,27,30,31] when compared to techniques
using attitude as a supplementary measurement. However, when the center of gravity tracker
is used on preconditioned measurements, its performance approaches that of the
attitude/translation tracker. This observation illustrates the importance of preconditioned
measurements. Conclusions regarding the relative importance of preconditioning and using
attitude data have to be made with some reservations. The ultimate performance of each
approach cannot really be defined since the comparisons are being made with real radar data
rather than theoretically exact simulation data. Therefore, there is no ground truth for
comparison to the actual position of the aircraft, rather there is only comparisons to the best
available radar data.

The two versions of the attitude/translation tracker has virtual identical tracking performance.
The use of vehicle specific inertia had no significant effect on the performance of the tracker.
This result further confirms the conclusions in [1] that the angular rate terms in the state model
may be effectively represented as white noise. The most important aspect of this observation
is that detailed vehicle specific data is not needed for effective tracking. This is especially
beneficial since such data may not be available in a combat scenario.

The results for predicting the trajectory of the aircraft over a one second interval showed the
importance of the regression techniques in both preconditioning the data and deriving artificial
measurements. Prediction was performed using noisy data with Runge-Kutta integration of the
state equations, preconditioned data with Runge-Kutta integration and preconditioned data with
artificial measurements extrapolated from the regression models.

In all cases the worst performance was realized with the center of gravity model using noisy data
and Runge-Kutta integration. The use of preconditioned data with Runge-Kutta integration
improved the performance of the center of gravity model by nearly 40% in some cases. The
most notable improvement as found with the use of artificial measurements. The maximum
prediction errors were reduced by 50% or more in each case. In every data set, the artificial
measurements were a more effective means of improving the prediction performance of the
center of gravity filter.

The prediction performance was also compared for the attitude/translation filters. The use of
preconditioned measurements improved both the maximum and average prediction errors
throughout the trajectory. The use of artificial measurements consistently showed decreased
prediction errors over the use of Runge-Kutta integration. The use of vehicle specific inertia
in the attitude/translation filter has a negligible effect on its predictive performance.
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Overall, the use of attitude information has been confirmed as a means for improving tracking
and predictive performance. Regression modelling in both preconditioning measurement data
and extrapo*.ating artificial measurements has been demonstrated to be a powerful tool for
improving the performance of advanced tracking and prediction techniques.
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Conclusions

A comparison of three different tracking and prediction filters was made based on a trajectory
of actual aircraft performance data from an F-14A. A classic center of gravity tracker was
compared to two attitude/translation tracking algorithms. One attitude/translation tracker used
a white noise model for angular accelerations and the other considered vehicle specific inertia.
The following results can be summarized from the performance tests:

1. Measuring and modelling the attitude of the aircraft produces a significant improvement
in both tracking and prediction accuracy.

2. The use of vehicle specific inertia in an attitude/translation tracker has negligible effects
on the improvement of tracking and prediction performance. Only limited aerodynamic
and mass data are needed to achieve the performance improvements associated with
trackers that include attitude information.

3. Preconditioning measurement data using adaptive regression modelling techniques has
been shown to offer a substantial improvement in tracking and prediction performance.
This approach requires no additional hardware in a real tracking environment and
imposed limited computational overhead, yet is offers a significant enhancement in
tracking and prediction performance.

4. Artificial measurements extrapolated from regression models of the measurement data
offer a means of improving prediction accuracy over numerical integration of the state
equations. This result suggests that regression modelling can capture the underlying
dynamics of the measurements and infuse that additional information into the filter to
improve predictive performance.
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Recommendations

This study provide some evidence suggesting a number of ways of improving the tracking and
prediction performance of advanced non-linear tracking filters. Since these approaches use
exteded Kalman filters, they are non-optimal in a theoretical sense. Therefore, there is a
potential for performance improvement. The empirical evidence in this report does not offer
proof of improved performance of trackers by using preconditioned data and artificial
measurements. Rather, these results demonstrate the potential of these techniques. More
investigation is warranted. The following studies are recommended:

1. Perform comparative studies of filter performance using other aircraft trajectories. A6
and AV8B data are immediately available for testing.

2. Perform comparative studies of filter performance using simulated trajectory data. This
data is not subject to the limitations of actual radar data.

3. Use shorter range (and hence, more reliable) radar data in a suite of tests. Data should
be used with ranges less than one mile to offer a comparison the extended range data
used in this test.
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Table 1. Symbols Used in the Tracker Models

L Rolling Moment
M Pitching Moment
N Yawing Moment
I Component of the Inertia Tensor
F Force
10 Roll Angle
0 Pitch Angle
'p Yaw Angle
p Roll Rate•
q Pitch Rate•
r Yaw Rate•
u Forward Velocity•
v Side Velocity *
w Downward Velocity'
m Vehicle Mass
k Constant Dependent on Stability and Control Derivatives

Angle of Attack
Sideslip Angle

w Process Noise
v Measurement Noise
x,y,z Cartesian Coordinates
xi State Variable (i = state index)

"R Range
'1 Azimuth

Elevation
a State Transition Function
h Measurement Function
G Process Noise Transformation Matrix
p State Error Covariance
Q Process Noise Covariance
R Measurement Noise Covariance
c Correlation Time for Acceleration Model
T Discrete Time Interval
bj Modelled Acceleration (j = x,y,z)
ai Acceleration (j = x,y,z)
vi Velocity (j = x,y,z)

with respect to the earth coordinate system but transformed in vehicle coordinates
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Table 2. Measurement Vector Used in the Tracker Models

' ROLL

e PITCH

7 YAW

R RANGE

z - 1I AZIMUTH

ELEVATION

R RANGE RATE

f AZIMUTH RATE

"ELEVATION RATE
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Table 3. State Equations for the Center of Gravity Tracker

b - + WI

by -13 + W2

T

*y b,

bz- z W

S4-0

a,, -0

S- a, + (bx + wO

Vy -ay + (by + ws)

-a ~+ ( 1 w6)vz- a. + (bz+w)

x - v, + aT

y - vy + ayT

z - v. + aT
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Table 4. State Equations for the Attitude Translation Tracker

p -E (I, - I,,)q r +k, +k2 p +k 3 r +k 4 wIII=

q [-(. - J,)pr +k~a +ksq + kqw 21 /Ib,

r-[-(Iy I=)pq + k1113 + k12P + kl r + Kj~~/z

*-p+qsinotanO + rcos~otanO

6 - qcos~i - rsinio

-(qsim~ + rcos4o) / cosO

x cos* sina cosO - cos*I cosa sinO cowo - sin* cosa singoJ]L4M + k16 (b, + w4

- sinhvsincccosO - sin*cosasim~cos4 + coeipsinasin(OJLIM + k16 (by + w.)

z-[-sinasinO - cosacosocosOJL/M + g + k1,6(b.. + w.)

x-x

y -Y

z -Z

by- by W

bZ- iz+ W9

*Constants kikare vehicle specific. These constants are set to zero and are compensated for
by additive process noise.
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Table 5. Measurement Noise

Measurement Standard Deviation

S0.00076 rad

e 0.00076 rad

_0.00076 rad

R 2500 ft

TI 0.000004 rad

_0.000004 rad

A 2500 ft/s

A 0.000016 rad/s

0.000016 rad/s
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Figures
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RAD / IMAGING MEASUREMENTS
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PARALLEL REGRESSION - OYNAMICS
KALMAN FILTERS FOR MEASUREMENTS

i MEASUREMENT STATE ESTIMATES 7.
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RADAR / IMAGING MEASUREMENTS

, REGRESSION MODELS

ATTITUDE / TRANSLATION
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EITENDED KALMAN FILTER

AIRCRAFT STATE ESTIMATE

Figure 1 Schematic of Trajectory Estimation Technique Using Regression Models of
Measurement Dynamics.
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Figure 11 Complete F-14A Trajectory on TACTS Training Range (Cherry Point MCAS)
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Figure 13 Portion of F-14A Trajectory Used for Testing (4g Turn and Dive)
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APPENDIX A

CONVERSION OF A POWER SERIES REGRESSION EQUATION INTO A DISCRETE
TIME STATE MODEL
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This work uses a novel approach to convert power series, time-based, regression models into
discrete state models. A power series regression model of discrete time steps:

y(kT) - bo(kT)°+bl(kT)'+b 2(kl) 2 + ... +b,(kT)n+e(k7)

is used to represent dynamics in the form of the conventional time derivative of the continuous-
time regression equation:

dy(t) _ bl+2b2t+ - nb~t-_'+ de(t)
dt dt

The state equations can be placed in matrix format as:

x(k+1) - Ax(k)+Bu(k)

In this technique, the A matrix for this system can be generalized as a constant matrix:

fAj IA 2 '

A3 nxn

where

A1 -

A2 - '1 n-lxn-1

and

A -n()() 
(1)2(fl)]
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The B matrix takes the form of a constant matrix:

0

0

0

1 ,.l1

The output equation of the system, representing the measurement data, is given as:

y(k) - •((-1)Y-'("/)o+a,..x 1 (k) + ctou(k) + e(k)

1- •-1ij( R ]! ~ !ý~-
n-i

ig t ij-1

0 , elsewhere

In matrix format, this can be given as:

y(k) - Cx(k)+Du(k) + e(k)

where C can be defined as:

C - [(1YX'(:)Uo+a. (.)'-,1)aO+at- 1

(-1)1(2)ao+a (-1)o(nl)a 0 +aI
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and D is defined as the constant matrix:

The result is a state model of a power-series regression estimate, supplying the necessary data

for implementation of the Kalman Filter.
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APPENDIX B

COMPARISONS OF TRACKING AND PREDICTION PERFORMANCE
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Table BI

Tracking Errors - Interval: 69-74 Seconds

Input Data Tracker Error Measurement (Feet)

TyeX Max Y Max Z Max Max Average RMS

Noisy CG 22.94 79.70 83.20 116.87 40.2 50.67

AT 31.84 42.19 72.68 85.01 30.22 35.77

AT-VSI 31.84 43.14 72.65 84.98 30.22 36.76

Preconditioned CG 29.09 28.73 15.61 35.52 24.88 35.76

AT 29.21 30.69 16.74 35.85 26.25 25.23

AT-VSI 29.21 30.69 16.74 35.85 26.25 26.52

Prediction Error - Tracking Interval: 69-74 Seconds Prediction Interval: 74 - 75 Seconds

Input Data/ Tracker Error Measurement (Feet)

MPeito X Max Y Max Z Max Max Average RMS

Noisy/ CG 25.71 135.15 162.35 212.60 164.65 167.17
Runge Kutta AT 28.07 43.96 139.14 142.78 112.70 113.93

AT-VSI 28.06 15.31 138.81 142.22 112.54 113.75

Preconditioned/ CG 50.48 75.98 61.30 109.91 70.75 74.16
Runge Kutta AT 36.41 71.19 60.94 99.93 67.48 70.09

AT-VSI 36.42 71.17 60.86 99.86 67.45 70.06

Preconditioned/ CG 31.76 46.76 34.07 63.65 45.95 46.64
Artificial

Measurements AT 31.99 37.62 28.36 54.37 41.81 42.19

AT-VSI 31.99 37.62 28.36 54.37 41.81 42.19
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Table B2

Tracking Errors - Interval: 69-75 Seconds

Input Data Tracker Error Measurement (Feet)
Type X Max _Y Max Z Max Max Average RMS

=

Noisy CG 21.50 88.42 89.14 125.95 49.83 60.68

AT 16.55 51.46 85.06 98.64 36.78 46.16

AT-VSI 16.55 51.47 84.98 98.59 36.76 46.13

Preconditioned CG 21.10 40.61 22.06 48.75 26.75 27.56

AT 20.94 33.13 21.77 42.79 27.33 27.81

AT-VSI 20.94 33.13 21.77 42.79 27.33 27.81

Prediction Error - Tracking Interval: 69-75 Seconds Prediction Interval: 75 - 76 Seconds

Input Data/ Tracker Error Measurement (Feet)

Prediction Type I
Method X Max Y Max Z Max Max Average RMS

Noisy/ CG 7.33 70.30 34.78 75.66 36.85 40.77
Runge Kutta AT 50.74 70.70 96.61 130.03 89.6 91.42

AT-VSI 50.71 70.80 96.5 129.64 88.91 91.15

Preconditioned/ CG 14.63 65.18 37.88 75.82 64.95 63.38
Runge Kutta AT 15.40 61.90 41.04 74.68 61.49 62.12

AT-VSI 15.40 61.87 40.93 74.59 61.46 62.9

Preconditioned/ CG 15.11 42.13 28.55 50.99 47.61 47.77
Artificial

MeaUrements AT 15.69 33.46 26.65 43.64 38.80 39.11

AT-VSI 15.69 33.46 26.65 43.64 38.80 39.11
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Table B3

Tracking Errors - Interval: 69-76 Seconds

Input Data Tracker Error Measurement (Feet)
Type X Max Y Max Z Max Max Average RMS

Noisy CG 29.60 88.15 90.68 128.50 52.51 63.41

AT 31.84 51.26 86.14 100.24 43.36 51.33

AT-VSI 31.84 51.26 86.08 100.19 43.33 51.29

Preconditioned CG 34.85 44.85 23.97 59.14 32.38 34.89

AT 34.71 37.63 23.59 53.82 32.15 33.75

AT-VSI 34.71 37.63 23.59 53.82 32.15 33.75

Prediction Error Tracking Interval: 69-76 Seconds Prediction Interval: 76 - 77 Seconds

Input Data/ Tracker Error Measurement (Feet)

Prediction Type 1
fetho X Max Y Max Z Max Max Average RMS

Noisy/ CG 40.73 57.25 87.61 108.53 95.82 96.14
Runge Kutta AT 18.39 90.36 95.92 132.55 93.02 94.68

AT-VSI 18.40 90.51 95.06 132.04 92.65 94.30

Preconditioned/ CG 26.57 57.04 19.94 63.73 59.65 59.69

Runge Kutta
AT 35.31 62.35 19.31 72.53 63.32 63.73

________AT-VSI 35.33 62.32 19.31 72.49 63.30 63.71

Preconditioned/ CG 26.49 60.99 20.91 65.29 60.73 60.79
Artificial
Measurements AT 25.70 54.00 19.82 58.45 54.19 54.26

AT-VSI 25.70 54.00 19.82 58.45 54.19 54.26
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Table B4

Tracking Errors - Interval: 69-77 Seconds

Input Data Tracker Error Measurement (Feet)

TyeX Max Y Max Z Max Max Average RMS

Noisy CG 16.42 56.66 69.26 78.42 31.24 34.59

AT 25.95 45.47 70.36 71.06 35.35 37.72

AT-VSI 25.95 45.46 70.36 71.06 35.35 37.24

Preconditioned CG 34.86 44.69 23.97 59.14 33.59 35.92

AT 34.71 37.46 23.59 53.87 32.43 33.91

AT-VSI 34.71 37.46 23.59 53.82 32.43 33.91

Prediction Error - Tracking Interval: 69-77 Seconds Prediction Interval: 77 - 78 Seconds

Input Data/ Tracker Error Measurement (Feet)
Prediction TypeMethod X Max Y Max Z Max Max Average RMS

Noisy/ CG 12.09 121.82 48.49 131.20 100.80 102.63
Runge Kutta AT 15.66 67.61 22.33 70.12 41.11 43.43

AT-VSI 15.65 67.75 22.82 70.47 41.38 43.71

Preconditioned/ CG 17.91 26.43 29.23 38.79 32.96 33.11

Runge Kutta AT 26.91 24.17 32.46 46.42 33.72 34.48

AT-VSI 26.96 24.16 32.29 46.31 33.68 34.44

Preconditioned/ CG 10.79 24.16 11.80 28.98 22.39 22.54

Artificial
Meaurements AT 10.34 17.08 10.06 22.36 16.84 16.96

_ AT-VSI 10.34 17.08 10.06 22.36 16.84 16.96
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